3.83 \(\int x^5 (d+e x^2) (a+b \text{csch}^{-1}(c x)) \, dx\)

Optimal. Leaf size=204 \[ \frac{1}{6} d x^6 \left (a+b \text{csch}^{-1}(c x)\right )+\frac{1}{8} e x^8 \left (a+b \text{csch}^{-1}(c x)\right )+\frac{b x \left (-c^2 x^2-1\right )^{5/2} \left (4 c^2 d-9 e\right )}{120 c^7 \sqrt{-c^2 x^2}}+\frac{b x \left (-c^2 x^2-1\right )^{3/2} \left (8 c^2 d-9 e\right )}{72 c^7 \sqrt{-c^2 x^2}}+\frac{b x \sqrt{-c^2 x^2-1} \left (4 c^2 d-3 e\right )}{24 c^7 \sqrt{-c^2 x^2}}-\frac{b e x \left (-c^2 x^2-1\right )^{7/2}}{56 c^7 \sqrt{-c^2 x^2}} \]

[Out]

(b*(4*c^2*d - 3*e)*x*Sqrt[-1 - c^2*x^2])/(24*c^7*Sqrt[-(c^2*x^2)]) + (b*(8*c^2*d - 9*e)*x*(-1 - c^2*x^2)^(3/2)
)/(72*c^7*Sqrt[-(c^2*x^2)]) + (b*(4*c^2*d - 9*e)*x*(-1 - c^2*x^2)^(5/2))/(120*c^7*Sqrt[-(c^2*x^2)]) - (b*e*x*(
-1 - c^2*x^2)^(7/2))/(56*c^7*Sqrt[-(c^2*x^2)]) + (d*x^6*(a + b*ArcCsch[c*x]))/6 + (e*x^8*(a + b*ArcCsch[c*x]))
/8

________________________________________________________________________________________

Rubi [A]  time = 0.1613, antiderivative size = 204, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {14, 6302, 12, 446, 77} \[ \frac{1}{6} d x^6 \left (a+b \text{csch}^{-1}(c x)\right )+\frac{1}{8} e x^8 \left (a+b \text{csch}^{-1}(c x)\right )+\frac{b x \left (-c^2 x^2-1\right )^{5/2} \left (4 c^2 d-9 e\right )}{120 c^7 \sqrt{-c^2 x^2}}+\frac{b x \left (-c^2 x^2-1\right )^{3/2} \left (8 c^2 d-9 e\right )}{72 c^7 \sqrt{-c^2 x^2}}+\frac{b x \sqrt{-c^2 x^2-1} \left (4 c^2 d-3 e\right )}{24 c^7 \sqrt{-c^2 x^2}}-\frac{b e x \left (-c^2 x^2-1\right )^{7/2}}{56 c^7 \sqrt{-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[x^5*(d + e*x^2)*(a + b*ArcCsch[c*x]),x]

[Out]

(b*(4*c^2*d - 3*e)*x*Sqrt[-1 - c^2*x^2])/(24*c^7*Sqrt[-(c^2*x^2)]) + (b*(8*c^2*d - 9*e)*x*(-1 - c^2*x^2)^(3/2)
)/(72*c^7*Sqrt[-(c^2*x^2)]) + (b*(4*c^2*d - 9*e)*x*(-1 - c^2*x^2)^(5/2))/(120*c^7*Sqrt[-(c^2*x^2)]) - (b*e*x*(
-1 - c^2*x^2)^(7/2))/(56*c^7*Sqrt[-(c^2*x^2)]) + (d*x^6*(a + b*ArcCsch[c*x]))/6 + (e*x^8*(a + b*ArcCsch[c*x]))
/8

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 6302

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCsch[c*x], u, x] - Dist[(b*c*x)/Sqrt[-(c^2*x^2)], Int[Simp
lifyIntegrand[u/(x*Sqrt[-1 - c^2*x^2]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&
!(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0]))
 || (ILtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int x^5 \left (d+e x^2\right ) \left (a+b \text{csch}^{-1}(c x)\right ) \, dx &=\frac{1}{6} d x^6 \left (a+b \text{csch}^{-1}(c x)\right )+\frac{1}{8} e x^8 \left (a+b \text{csch}^{-1}(c x)\right )-\frac{(b c x) \int \frac{x^5 \left (4 d+3 e x^2\right )}{24 \sqrt{-1-c^2 x^2}} \, dx}{\sqrt{-c^2 x^2}}\\ &=\frac{1}{6} d x^6 \left (a+b \text{csch}^{-1}(c x)\right )+\frac{1}{8} e x^8 \left (a+b \text{csch}^{-1}(c x)\right )-\frac{(b c x) \int \frac{x^5 \left (4 d+3 e x^2\right )}{\sqrt{-1-c^2 x^2}} \, dx}{24 \sqrt{-c^2 x^2}}\\ &=\frac{1}{6} d x^6 \left (a+b \text{csch}^{-1}(c x)\right )+\frac{1}{8} e x^8 \left (a+b \text{csch}^{-1}(c x)\right )-\frac{(b c x) \operatorname{Subst}\left (\int \frac{x^2 (4 d+3 e x)}{\sqrt{-1-c^2 x}} \, dx,x,x^2\right )}{48 \sqrt{-c^2 x^2}}\\ &=\frac{1}{6} d x^6 \left (a+b \text{csch}^{-1}(c x)\right )+\frac{1}{8} e x^8 \left (a+b \text{csch}^{-1}(c x)\right )-\frac{(b c x) \operatorname{Subst}\left (\int \left (\frac{4 c^2 d-3 e}{c^6 \sqrt{-1-c^2 x}}+\frac{\left (8 c^2 d-9 e\right ) \sqrt{-1-c^2 x}}{c^6}+\frac{\left (4 c^2 d-9 e\right ) \left (-1-c^2 x\right )^{3/2}}{c^6}-\frac{3 e \left (-1-c^2 x\right )^{5/2}}{c^6}\right ) \, dx,x,x^2\right )}{48 \sqrt{-c^2 x^2}}\\ &=\frac{b \left (4 c^2 d-3 e\right ) x \sqrt{-1-c^2 x^2}}{24 c^7 \sqrt{-c^2 x^2}}+\frac{b \left (8 c^2 d-9 e\right ) x \left (-1-c^2 x^2\right )^{3/2}}{72 c^7 \sqrt{-c^2 x^2}}+\frac{b \left (4 c^2 d-9 e\right ) x \left (-1-c^2 x^2\right )^{5/2}}{120 c^7 \sqrt{-c^2 x^2}}-\frac{b e x \left (-1-c^2 x^2\right )^{7/2}}{56 c^7 \sqrt{-c^2 x^2}}+\frac{1}{6} d x^6 \left (a+b \text{csch}^{-1}(c x)\right )+\frac{1}{8} e x^8 \left (a+b \text{csch}^{-1}(c x)\right )\\ \end{align*}

Mathematica [A]  time = 0.248026, size = 114, normalized size = 0.56 \[ \frac{x \left (105 a x^5 \left (4 d+3 e x^2\right )+\frac{b \sqrt{\frac{1}{c^2 x^2}+1} \left (c^6 \left (84 d x^4+45 e x^6\right )-2 c^4 \left (56 d x^2+27 e x^4\right )+8 c^2 \left (28 d+9 e x^2\right )-144 e\right )}{c^7}+105 b x^5 \text{csch}^{-1}(c x) \left (4 d+3 e x^2\right )\right )}{2520} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5*(d + e*x^2)*(a + b*ArcCsch[c*x]),x]

[Out]

(x*(105*a*x^5*(4*d + 3*e*x^2) + (b*Sqrt[1 + 1/(c^2*x^2)]*(-144*e + 8*c^2*(28*d + 9*e*x^2) - 2*c^4*(56*d*x^2 +
27*e*x^4) + c^6*(84*d*x^4 + 45*e*x^6)))/c^7 + 105*b*x^5*(4*d + 3*e*x^2)*ArcCsch[c*x]))/2520

________________________________________________________________________________________

Maple [A]  time = 0.2, size = 152, normalized size = 0.8 \begin{align*}{\frac{1}{{c}^{6}} \left ({\frac{a}{{c}^{2}} \left ({\frac{e{c}^{8}{x}^{8}}{8}}+{\frac{{c}^{8}{x}^{6}d}{6}} \right ) }+{\frac{b}{{c}^{2}} \left ({\frac{{\rm arccsch} \left (cx\right )e{c}^{8}{x}^{8}}{8}}+{\frac{{\rm arccsch} \left (cx\right ){c}^{8}{x}^{6}d}{6}}+{\frac{ \left ({c}^{2}{x}^{2}+1 \right ) \left ( 45\,{c}^{6}{x}^{6}e+84\,{x}^{4}{c}^{6}d-54\,{c}^{4}e{x}^{4}-112\,{c}^{4}d{x}^{2}+72\,{c}^{2}{x}^{2}e+224\,{c}^{2}d-144\,e \right ) }{2520\,cx}{\frac{1}{\sqrt{{\frac{{c}^{2}{x}^{2}+1}{{c}^{2}{x}^{2}}}}}}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(e*x^2+d)*(a+b*arccsch(c*x)),x)

[Out]

1/c^6*(a/c^2*(1/8*e*c^8*x^8+1/6*c^8*x^6*d)+b/c^2*(1/8*arccsch(c*x)*e*c^8*x^8+1/6*arccsch(c*x)*c^8*x^6*d+1/2520
*(c^2*x^2+1)*(45*c^6*e*x^6+84*c^6*d*x^4-54*c^4*e*x^4-112*c^4*d*x^2+72*c^2*e*x^2+224*c^2*d-144*e)/((c^2*x^2+1)/
c^2/x^2)^(1/2)/c/x))

________________________________________________________________________________________

Maxima [A]  time = 1.00615, size = 238, normalized size = 1.17 \begin{align*} \frac{1}{8} \, a e x^{8} + \frac{1}{6} \, a d x^{6} + \frac{1}{90} \,{\left (15 \, x^{6} \operatorname{arcsch}\left (c x\right ) + \frac{3 \, c^{4} x^{5}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{5}{2}} - 10 \, c^{2} x^{3}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{3}{2}} + 15 \, x \sqrt{\frac{1}{c^{2} x^{2}} + 1}}{c^{5}}\right )} b d + \frac{1}{280} \,{\left (35 \, x^{8} \operatorname{arcsch}\left (c x\right ) + \frac{5 \, c^{6} x^{7}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{7}{2}} - 21 \, c^{4} x^{5}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{5}{2}} + 35 \, c^{2} x^{3}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{3}{2}} - 35 \, x \sqrt{\frac{1}{c^{2} x^{2}} + 1}}{c^{7}}\right )} b e \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(e*x^2+d)*(a+b*arccsch(c*x)),x, algorithm="maxima")

[Out]

1/8*a*e*x^8 + 1/6*a*d*x^6 + 1/90*(15*x^6*arccsch(c*x) + (3*c^4*x^5*(1/(c^2*x^2) + 1)^(5/2) - 10*c^2*x^3*(1/(c^
2*x^2) + 1)^(3/2) + 15*x*sqrt(1/(c^2*x^2) + 1))/c^5)*b*d + 1/280*(35*x^8*arccsch(c*x) + (5*c^6*x^7*(1/(c^2*x^2
) + 1)^(7/2) - 21*c^4*x^5*(1/(c^2*x^2) + 1)^(5/2) + 35*c^2*x^3*(1/(c^2*x^2) + 1)^(3/2) - 35*x*sqrt(1/(c^2*x^2)
 + 1))/c^7)*b*e

________________________________________________________________________________________

Fricas [A]  time = 3.0506, size = 378, normalized size = 1.85 \begin{align*} \frac{315 \, a c^{7} e x^{8} + 420 \, a c^{7} d x^{6} + 105 \,{\left (3 \, b c^{7} e x^{8} + 4 \, b c^{7} d x^{6}\right )} \log \left (\frac{c x \sqrt{\frac{c^{2} x^{2} + 1}{c^{2} x^{2}}} + 1}{c x}\right ) +{\left (45 \, b c^{6} e x^{7} + 6 \,{\left (14 \, b c^{6} d - 9 \, b c^{4} e\right )} x^{5} - 8 \,{\left (14 \, b c^{4} d - 9 \, b c^{2} e\right )} x^{3} + 16 \,{\left (14 \, b c^{2} d - 9 \, b e\right )} x\right )} \sqrt{\frac{c^{2} x^{2} + 1}{c^{2} x^{2}}}}{2520 \, c^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(e*x^2+d)*(a+b*arccsch(c*x)),x, algorithm="fricas")

[Out]

1/2520*(315*a*c^7*e*x^8 + 420*a*c^7*d*x^6 + 105*(3*b*c^7*e*x^8 + 4*b*c^7*d*x^6)*log((c*x*sqrt((c^2*x^2 + 1)/(c
^2*x^2)) + 1)/(c*x)) + (45*b*c^6*e*x^7 + 6*(14*b*c^6*d - 9*b*c^4*e)*x^5 - 8*(14*b*c^4*d - 9*b*c^2*e)*x^3 + 16*
(14*b*c^2*d - 9*b*e)*x)*sqrt((c^2*x^2 + 1)/(c^2*x^2)))/c^7

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{5} \left (a + b \operatorname{acsch}{\left (c x \right )}\right ) \left (d + e x^{2}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(e*x**2+d)*(a+b*acsch(c*x)),x)

[Out]

Integral(x**5*(a + b*acsch(c*x))*(d + e*x**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x^{2} + d\right )}{\left (b \operatorname{arcsch}\left (c x\right ) + a\right )} x^{5}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(e*x^2+d)*(a+b*arccsch(c*x)),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)*(b*arccsch(c*x) + a)*x^5, x)